Towards User-in-the-Loop Online Fashion Size Recommendation with Low Cognitive Load

Leonidas Lefakis, Evgenii Koriagin Julia Lasserre, Reza Shirvany Zalando SE

Size Recommendation

DRESS - Jumper dress

309,95 € vot metuded

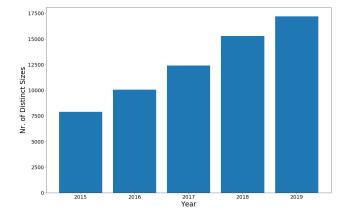
Express delivery available

Given a customer c and an article a recommend size s^*

$$s^* = \operatorname{argmax} \left(P(R = kept, S = s | C = c, A = a) \right)$$

where R is the return status of the order.

Why is it important?


- ▶ Customer Experience.
- Platform Profits.
- ▶ Environmental Impact.

- ▶ Limitations and Coarseness of Sizing Systems.
- ▶ Grading from Target Sizes.
- ► Variety of Sizing Systems.
- ▶ Non-Standardization of Sizing Systems.
- Vanity Sizing.
- ▶ Subjective Aspect of Size and Fit.

Size Problem Complexity

Distinct Apparel Sizes

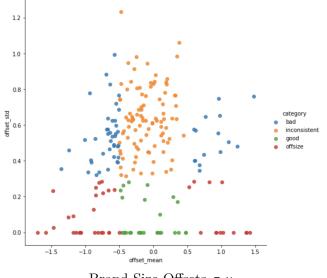
Assume customer c has bought article a in multiple sizes returning some.

Customer offset

$$o_{ca} = rac{1}{K_{ca}} \sum_{k=1}^{K_{ca}} s_{cak} - rac{1}{R_{ca}} \sum_{r=1}^{R_{ca}} s_{car}$$

Article offset distribution

$$\mathcal{N}_{a}\left(\frac{1}{N_{C}}\sum_{c=1}^{N_{C}}o_{ca},\frac{1}{N_{C}-1}\sum_{c=1}^{N_{C}}(o_{ca}-\mu_{a})^{2}\right)$$

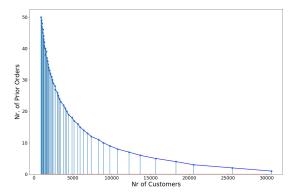


If article a_i belonging to brand b has sales w_i .

Brand offset distribution

$$\mathcal{N}_{b}\left(\frac{1}{\sum_{i=1}^{N_{A}}w_{i}}\sum_{i=1}^{N_{A}}w_{i}\mu_{a_{i}}, \frac{1}{\sum_{i=1}^{N_{A}}w_{i}}\sum_{i=1}^{N_{A}}w_{i}(\mu_{ai}-\mu_{b})^{2}\right)$$

Brand Size Offsets σ, μ


- ▶ Size tables, article measurements.
- ▶ Article based size advice.
- ▶ Personalized order history based size reco.
- Customer in the loop personalized size reco.
- ▶ Computer vision and 3D approaches.

- ▶ Size tables, article measurements.
- ▶ Article based size advice.
- ▶ Personalized order history based size reco.
- Customer in the loop personalized size reco.
- ▶ Computer vision and 3D approaches.

Cold Start

Number of customers vs. number of prior orders.

zalando

We want to predict customer size in the female upper garment category without the benefit of prior order information.

We want to predict customer size in the female upper garment category without the benefit of prior order information.

 \rightarrow **Zalon** (styling service)

Type	Features
Overall	weight, height, age, gender
Upper body	top size, shirt collar size, shirt fit, proportion
	belly, top fit, proportion shoulder-waist, bust
	number, bust cup size, proportion shoulder-
	hip, blazer size
Lower body	pants size, jeans length, jeans width,
	proportion waist, pants waist-height , shoe size

Type	Features
Overall	weight, height, age, gender
Upper body	top size, shirt collar size, shirt fit, proportion
	belly, top fit, proportion shoulder-waist, bust
	number, bust cup size, proportion shoulder-
	hip, blazer size
Lower body	pants size, jeans length, jeans width,
	proportion waist, pants waist-height , shoe size

Customers report their sizes \rightarrow we recommend them their sizes!

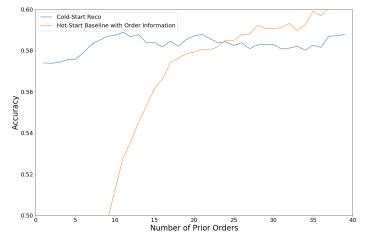
Customers report their sizes \rightarrow we recommend them their sizes!

Unfortunately that is not how it works :(

▶ Customers only buy their stated size $\sim 50\%$ of the time.

Customers only buy their stated size ~ 50% of the time.
Customers tend to under-report their size.

- \blacktriangleright Customers only buy their stated size $\sim 50\%$ of the time.
- ▶ Customers tend to under-report their size.
- ▶ Male Customers are more likely to under-report their size.



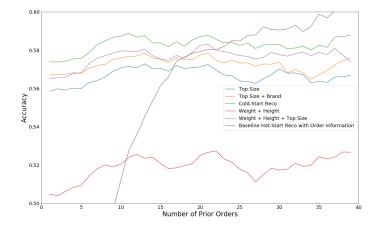
Cross-validation experiments highlighted the benefits of **Gradient Boosted Trees.**

- An ensemble of Classification Trees built sequentially with boosting.
- Strong Performance + Interpretability + Robust to Overfitting.

Cold-Start Performance

The presented solution requires us to ask 20 size-related questions from the customer.

 \rightarrow This requires high engagement from the customer!


The presented solution requires us to ask 20 size-related questions from the customer.

 \rightarrow This requires high engagement from the customer!

Can we retain performance while reducing cognitive load?

Performance vs Cognitive Load

Using Weight, Height, and Top Size performs very well.
Top Size + Brand Information is a close second.

Using Weight, Height, and Top Size performs very well.
Top Size + Brand Information is a close second.

Top Size + Brand are not personal data!

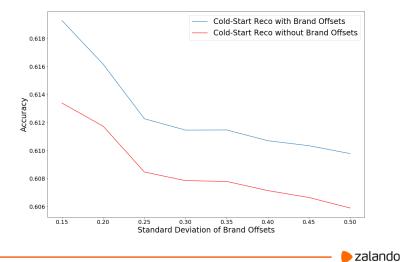
Customer prefer dislike giving weight and height.

Using Weight, Height, and Top Size performs very well.
Top Size + Brand Information is a close second.

Top Size + Brand are not personal data!

Customer prefer dislike giving weight and height.

Top Size + Brand is the best alternative solution.


Which brand is it?

Size on the label?

Highlight products in my sizes

 \rightarrow

None of the presented solutions use order information.

None of the presented solutions use order information.

 \rightarrow Can we build a personalized reco that leverages both forms of data?

None of the presented solutions use order information.

 \rightarrow Can we build a personalized reco that leverages both forms of data?

 \rightarrow Do our findings continue to hold in this case?

MetalSF (Lasserre et al. 2020)

Questions?

