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Size Recommendation

—

DRESS - Jumper dress

309,95 €
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What are we trying to solve?

—

Given a customer ¢ and an article a recommend size s*

s" = argmax (P(R = kept, S = s|C = ¢, A =a))

where R is the return status of the order.
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Why is it important?

» Customer Experience.
» Platform Profits.

» Environmental Impact.
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Why is it difficult?
—

Limitations and Coarseness of Sizing Systems.
Grading from Target Sizes.
Variety of Sizing Systems.

>
>
>
> Non-Standardization of Sizing Systems.
> Vanity Sizing.

>

Subjective Aspect of Size and Fit.
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Size Problem Complexity
—
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Article Offsets
—

Assume customer ¢ has bought article a in multiple sizes
returning some.

> Customer offset
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Brand Offsets
—

If article a; belonging to brand b has sales w;.

» Brand offset distribution
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Approaches

Size tables, article measurements.
Article based size advice.
Personalized order history based size reco.

Customer in the loop personalized size reco.

vVvYVvyyVvyy

Computer vision and 3D approaches.
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Approaches

Size tables, article measurements.

Article based size advice.

>

>

P Personalized order history based size reco.

» Customer in the loop personalized size reco.
| 2

Computer vision and 3D approaches.
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Cold Start
—

w
&
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Number of customers vs. number of prior orders.
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Cold Start
—

We want to predict customer size in the female upper garment
category without the benefit of prior order information.
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Cold Start
—

We want to predict customer size in the female upper garment
category without the benefit of prior order information.

— Zalon (styling service)
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Questionnaire Data 14

—

Type Features

Overall weight, height, age, gender

Upper body top size, shirt collar size, shirt fit, proportion
belly, top fit, proportion shoulder-waist, bust
number, bust cup size, proportion shoulder-
hip, blazer size

Lower body pants size, jeans length, jeans width,

proportion waist, pants waist-height , shoe size
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Questionnaire Example

—

DEINE KO

RPERPROPORTIONEN

un

Breitere Schultem  Schmalere Schulter  Insgesamt breiter  Insgesamt schmaler

Q

Flacher Bauch

BAUCH

U

Leichter Bauchansatz  Rundlicher Bauch
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Questionnaire Data 16

—

Type Features

Overall weight, height, age, gender

Upper body top size, shirt collar size, shirt fit, proportion
belly, top fit, proportion shoulder-waist, bust
number, bust cup size, proportion shoulder-
hip, blazer size

Lower body pants size, jeans length, jeans width,

proportion waist, pants waist-height , shoe size
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OK so problem solved!
—

Customers report their sizes
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OK so problem solved!
—

Customers report their sizes — we recommend them their sizes!
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OK so problem solved!
—

Customers report their sizes — we recommend them their sizes!

Unfortunately that is not how it works :(
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OK so problem solved!
—

Customers report their sizes

» Customers only buy their stated size ~ 50% of the time.
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OK so problem solved!
—

Customers report their sizes

» Customers only buy their stated size ~ 50% of the time.

» Customers tend to under-report their size.
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OK so problem solved!
—

Customers report their sizes

» Customers only buy their stated size ~ 50% of the time.
» Customers tend to under-report their size.

> Male Customers are more likely to under-report their size.

® zalando

17




Then let’s do ML! 18
e

Cross-validation experiments highlighted the benefits of
Gradient Boosted Trees.

> An ensemble of Classification Trees built sequentially with

boosting.

> Strong Performance + Interpretability + Robust to
Overfitting.

® zalando




Cold-Start Performance

—
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Cognitive Load
—

The presented solution requires us to ask 20 size-related
questions from the customer.

— This requires high engagement from the customer!
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Cognitive Load 20

—

The presented solution requires us to ask 20 size-related
questions from the customer.

— This requires high engagement from the customer!

Can we retain performance while reducing cognitive load?
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Performance vs Cognitive Load
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Best Alternatives

—

> Using Weight, Height, and Top Size performs very well.

> Top Size + Brand Information is a close second.
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Best Alternatives

—

> Using Weight, Height, and Top Size performs very well.

> Top Size + Brand Information is a close second.

Top Size + Brand are not personal data!

Customer prefer dislike giving weight and height.
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Best Alternatives 22

—

> Using Weight, Height, and Top Size performs very well.

> Top Size + Brand Information is a close second.

Top Size + Brand are not personal data!
Customer prefer dislike giving weight and height.

Top Size + Brand is the best alternative solution.
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Dialogue Tile
e

Which brand is it?

Size on the label?

Highlight products in my sizes
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Impact of Brand Offsets
—

—— Cold-Start Reco with Brand Offsets

o618 —— Cold-Start Reco without Brand Offsets
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Can we also leverage prior orders?

—

None of the presented solutions use order information.
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Can we also leverage prior orders?

—

None of the presented solutions use order information.

— Can we build a personalized reco that leverages both forms
of data?

® zalando

25




Can we also leverage prior orders? 25

—

None of the presented solutions use order information.

— Can we build a personalized reco that leverages both forms
of data?

— Do our findings continue to hold in this case?
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MetalSF (Lasserre et al. 2020)
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Questions?
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