Two-Stage Session-based Recommendations with Candidate Rank Embeddings.

Personalizing the Similar Item Recommendation of Zalando

José Antonio Sánchez Rodríguez, Jui-Chieh Wu, Mustafa Khandwawala

> 400,000 articles from

> 2,000

international brands

1 private labels

HIGHLY EXPERIENCED

category management

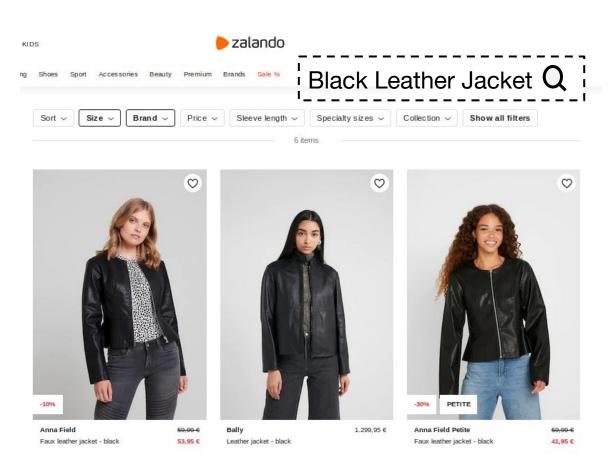
CURATED SHOPPING

with Zalon

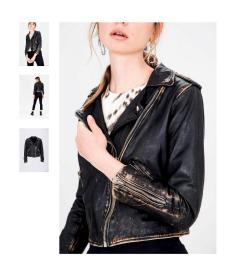
LOCALIZATION

of the assortment

Introduction



The Product Display Page (PDP)



Baseline: Item-to-Item Collaborative Filtering

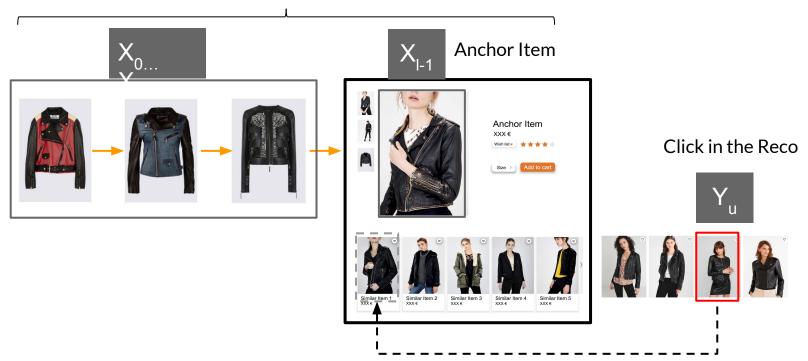
Based on the user-item matrix

Items	ems U _i		U _j	
	0		0	
	0		0	
	1		1	
	1		1	
	1		0	
	0		0	

- Similarity function in terms of the item vectors U_i and U_j for every i and j.
- Static Result for all the users given an anchor item

Using the Session to improve the Similar Reco

Session of the User



We want to predict Y_u given X₀,X₁,...X_{l-1} and push it to the top of the list zalando

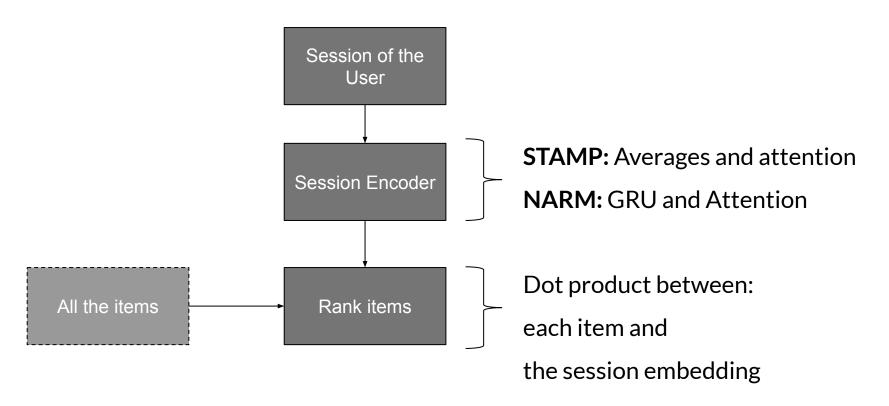
Offline Evaluation of Session-based Reco

	Recall@20	MRR@20	
STAMP	-10.63%	-6.43%	
NARM	-13.78%	-3.87%	

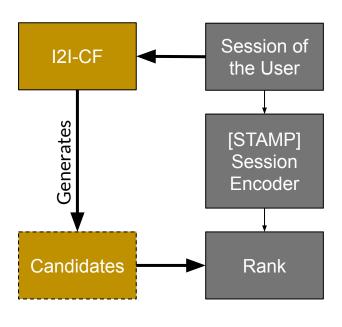
Numbers are the relative difference between the baseline and the given algorithm

Liu et al. 2018. STAMP: Short-Term A□ention/Memory Priority Model for Session-based Recommendation. Li et al. 2017.Neural A□entive Session-based Recommendation.

Structure of Session-based Recommenders



Using STAMP to Re-rank Collaborative Filtering

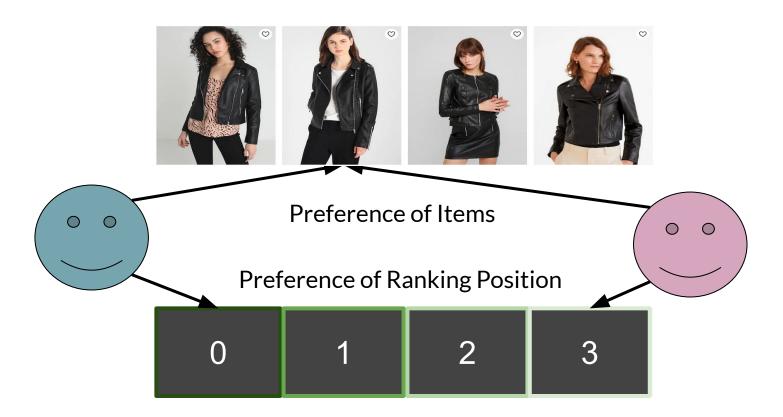


- Precalculate the Candidates
- Faster Training and Serving
- Used STAMP encoder

Candidate Rank as a feature

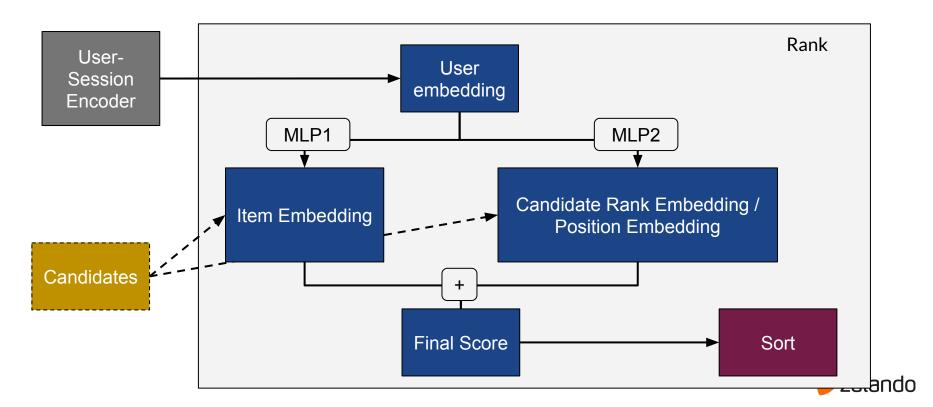
The Rank of the candidates from the baseline is an important feature!

Preference of the user on items and position

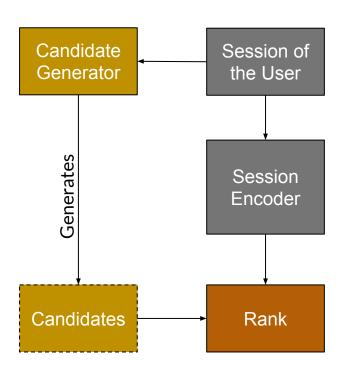


How to model the Rank of the Candidates

Using the information from the Ranking



Summary of the model used



- Used STAMP encoder
- Precalculate the Candidates
- Rank based on the item and the position of the candidate in the ranking

Results - Proposed Method

Offline Results

	Recall@20	MRR@20	
RRCRE-CF	+3.39%	+14.17%	

A/B test Results

	CTR	
RRCRE-CF	+2.84 (p-value <= 0.05)	

The number is the relative difference between the proposed method and the CF baseline

Next-Click-Prediction Results

when ranking STAMP and NARM On public datasets

Datasets	YooChoose 1/4 (Recsys 15)		Diginetica	
Algorithm \ Metrics	R@5	R@20	R@5	R@20
RRCRE-STAMP	+3.90%	+1.48%	+6.91%	+4.39%
RRCRE-NARM	+3.40%	+0.80%	+4.55%	+2.01%

relative improvements to the reranked algorithm

Summary

- Planned to use the Session to improve the Similar item Recommendation
- Proposed Modifications:
 - Using the baseline as Candidate Generator for STAMP
 - model the rank of the candidates with CR Embeddings
- Improvements:
 - In the similar item problem
 - STAMP and NARM on Public Datasets

